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Abstract
We study the electronic properties of ballistic thin normal metal–bulk
superconductor heterojunctions by solving the Bogoliubov–de Gennes
equations in the quasiclassical and microscopic ‘exact’ regimes. In particular,
the significance of the proximity effect is examined through a series of self-
consistent calculations of the space-dependent pair potential �(r). It is
found that self-consistency cannot be neglected for normal metal layer widths
smaller than the superconducting coherence length ξ0, revealing its importance
through discernible features in the subgap density of states. Furthermore, the
exact self-consistent treatment yields a proximity-induced gap in the normal
metal spectrum, which vanishes monotonically when the normal metal length
exceeds ξ0. Through a careful analysis of the excitation spectra, we find that
quasiparticle trajectories with wavevectors oriented mainly along the interface
play a critical role in the destruction of the energy gap.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to progressive advancements in the areas of materials growth and sample fabrication
techniques, the study of artificial structures consisting of normal metal–superconductor (N/S)
bilayers has undergone a considerable resurgence. In particular, refined material deposition
methods can yield reproducible and clean N/S layers with highly transparent interfaces. These
heterostructures have potential uses in a variety of applications, including logic elements and
rf devices.

The physical mechanism behind the proximity effect, i.e. the existence of superconducting
correlations in the normal metal, was investigated long ago [1] and is now known to be due to
Andreev reflection [1]. In this process, a superconductor in contact with a normal metal induces
phase coherence between the particle and hole wavefunctions in the metal, even in the absence
of a pairing interaction in the normal metal. The associated superconducting correlations give
rise to a finite value of the pair amplitude, F(r), which is the probability amplitude for finding
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a Cooper pair at the point r. Although the pair potential, �(r), gives essentially the same
information in the superconductor as F(r), the quantity �(r) vanishes in the normal metal in
the absence of attractive coupling. For a bulk, homogenous superconductor, � is a constant
that corresponds to the minimum excitation energy in the spectrum or the energy gap Eg. It
is well known that Eg is the binding energy of a Cooper pair, and its existence affects most
thermodynamic measurements. For inhomogenous N/S systems, �(r) naturally depends on
position, and thus the association between Eg and �(r) is then nontrivial. An analogous
property is exhibited in elementary quantum mechanics, whereby the Schrödinger equation
contains potentials that can vary in space yet the eigenvalues are spatially independent.

Over the years several quasiclassical works involving N/S hybrid structures have been
presented [2–12]. The self-consistent pair potential was calculated for a finite-width, double-
layer system with a finite reflection coefficient at the interface [3]. A numerical self-consistent
study of a system consisting of a finite normal metal layer adjacent to a bulk superconductor
indicated that a properly adjusted step-function model for the pair potential yields satisfactory
results [4]. Geometric resonance effects [5, 6] in finite N/S sandwiches were investigated
through tunnelling density of states (DOS) calculations. The existence of an energy gap in the
excitation spectrum has also been purported in various contexts [7–11]. Interface quality and
surface roughness have both been shown to reduce the overall gap [12].

For other types of systems, quasiclassical methods are inapplicable. In particular, there
are geometric configurations in which the structure under consideration has dimensions that
are smaller than the mean free path, or in which the interaction potentials vary over atomic
length scales. In this case, it is more appropriate to solve the problem within the ballistic
regime and to use a ‘microscopic method’, which implies that all length scales have been
retained in the respective equations. Unfortunately, solving the relevant equations from a
microscopic standpoint can be very demanding computationally, especially if the pair potential
is treated in a proper self-consistent way. Some recent works, however, have overcome
some of these difficulties. A microscopic recursion method [13] that uses a tight-binding
model Hamiltonian was presented for calculating the local spectral densities in hybrid N/S and
ferromagnet–superconductor nanostructures. A study of layered N/S layered structures [14]
involved numerical self-consistent solutions to the microscopic Gor’kov equations, and the
DOS revealed a gap structure in the normal metal layer. A particularly interesting restriction
of the quasiclassical approximation that is not found in the exact formalism is demonstrated
in the Andreev [1] equations, whereby values of the quasiparticle momentum parallel to
the interface—and comparable to the Fermi momentum—are crudely approximated. This
point has been discussed previously [15] in the context of superconductor–normal metal–
superconductor junctions, where it was shown that normal reflections can dominate the Andreev
reflection process. Recently, Andreev bound states have also been numerically calculated [16]
exactly and self-consistently for clean bulk N/S junctions. It was found that the quasiclassical
approximation fails for certain transverse junction widths.

In this paper, we perform the first systematic investigation of the self-consistent
quasiparticle spectra of clean N/S heterojunctions using an efficient numerical algorithm to
solve, without approximations, the microscopic Bogoliubov–de Gennes equations within the
continuum. The method therefore permits all length scales in the problem to be accounted
for equally. Our geometry is a bilayer ‘sandwich’ structure, where the normal layer is thin
(dN � ξ0) and the superconductor is in the bulk limit. Our study includes comparisons with
analytical solutions to the so-called (quasiclassical) Andreev equations. In the microscopic
regime, we find the energy gap variation as a function of the normal metal thickness parameter.
The role that self-consistency, and particular quasiparticle trajectories, play in the calculated
electronic structure is also carefully discussed.
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2. Method and results

We consider a three-dimensional semi-infinite system comprising a thin normal metal (of width
dN � ξ0) in electrical contact with a superconductor of width dS � ξ0. The system has a total
length of d in the z-direction, with the planar interface located at the point z = dN. The free
surfaces at z = 0 and d are specularly reflective. After taking into account the translational
invariance in the x–y plane, the electronic structure of the N/S system is given in terms of
the quasiparticle amplitudes �(z)T = (un(z), vn(z)), which are solutions to the microscopic
Bogoliubov–de Gennes equations [17]:

[σ̂z(−∇2
z /2m + ε‖ − EF) + σ̂x�(z) − εn]�(z) = 0, (1)

where σ̂x and σ̂z are the usual Pauli spin matrices, ε‖ ≡ 1/2m(k2
x + k2

y)
1/2 is the kinetic energy

of the quasiparticles parallel to the interface, EF is the Fermi energy, εn are the quasiparticle
energy eigenvalues, and �(z) is the pair potential. The coupled set of equations (1) are
completed by the self-consistency condition for the pair potential

�(z) = g(z)
∑

0<εn�ωD

un(z)vn(z)[1 − 2 f (εn)], (2)

where g(z) is the effective coupling constant that describes the electron–electron interaction,
ωD is the Debye energy, and f is the Fermi function. Here, g(z) = 0 in the normal metal and
g(z) = g in the superconductor.

For thin normal metal layers, the proximity effect plays a crucial role in the determination
of electronic properties. Thus a self-consistent pair potential is required. For the exact solutions
to equation (1), a numerical method is implemented to achieve this. We begin by expanding
the quasiparticle amplitudes in terms of a finite subset of orthonormal basis vectors:

un(z) =
N∑
q

unqφq(z), vn(z) =
N∑
q

vnqφq(z). (3)

We use the complete set of eigenfunctions φq(z) = 〈z|q〉 = (2/d)1/2 sin(kq z), where
kq = q/πd and q is a positive integer. Due to the finite range of the pairing interaction,
we can write the cut-off number N as the integer value of N = kFd/π(1 + ωD/EF)

1/2 [18].
Once this is done, we arrive at the following 2N × 2N matrix eigensystem:(H D

D −H
)

�n = εn�n, (4)

where �T
n = (un1, . . . , unN , vn1, . . . , vnN ). The matrix elements Hqq ′ connecting φq to φq ′ are

constructed from the term found in brackets in equation (1):

Hqq ′ = 〈q|[−∇2
z /2m + ε‖ − EF]|q ′〉 = [k2

q/2m + ε‖ − EF]δqq ′ . (5)

The off-diagonal matrix elements Dqq ′ are given as

Dqq ′ = 〈q|�(z)|q ′〉 =
∫ d

dN

dz φq(z)�(z)φq ′(z). (6)

Solving equation (4) yields the eigenvectors and eigenvalues required for the calculation of
physically relevant quantities performed below.

For the non-self-consistent solutions to equation (1), the pair potential is taken to be a
step function �(z) = �0�(z − dN). Furthermore, to emphasize the existence of a gap,
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we consider here excitations in the energy range εn/�0 � 1. The solutions to equation (1)
then take the form

�(z) =




a(εn, ε‖) sin(k+z)

(
1
0

)
+ b(εn, ε‖) sin(k−z)

(
0
1

)
, for 0 � z � dN

c(εn, ε‖)eiq+z

(
1

e−iϕ

)
+ d(εn, ε‖)e−iq−z

(
1

eiϕ

)
, for z � dN

(7)

where

e±iϕ ≡ εn/�0 ± i
√

1 − (εn/�0)2. (8)

Here the wavevectors in the normal metal layer are given as

k± = kF[1 − ε‖/EF ± εn/EF]1/2, (9)

while the wavevectors in the superconductor are

q± = kF
[
1 − ε‖/EF ± i

√
(�0/EF)2 − (εn/EF)2

]1/2
. (10)

The constants a, b, c and d are determined by invoking the continuity of �(z) and ∂�(z)/∂z
at the interface. After incorporating the boundary conditions, a relatively straightforward
calculation gives the following dispersion relation or eigenvalue equation [19]:

2dN

πξ0
(εn/�0) − [nπ + arccos(εn/�0)]

√
1 − ε‖/EF = 0, n = 0,±1,±2, . . . , (11)

where ξ0 ≡ kF/(πm�0) and, in accordance with the quasiclassical approximation, we have
retained only the leading-order terms in the small parameter �0/EF. For each fixed parallel
mode ε‖, equation (11) gives the allowed energies εn . Furthermore, as the ratio of dN/ξ0

is reduced, the number n of energy excitation branches decreases. In figure 1 we show the
calculated eigenvalues as a function of ε‖. The figure illustrates a nonzero minimum in εn only
for the cases calculated exactly, and occurs for quasiparticles with in-plane momenta close to
the Fermi level (ε‖/EF � 1). This is due in part to the quasiparticles not coupling to those
states responsible for superconductivity. It is therefore those trajectories with a significant
momentum component parallel to the interface that are significant in contributing to the filling
in of the gap. In the Andreev or quasiclassical approximation scheme, these trajectories are
not treated accurately, and those with ε‖/EF > 1 are neglected altogether. This discrepancy
is illustrated in the figure, where we see the quasiclassical result diverges from the exact cases
for sufficiently large ε‖. Figure 1 also illustrates that a self-consistent �(z) serves to reduce
Eg and contributes to additional localized bound states in the vicinity of εn = �0.

The dependence of Eg on the thickness of the normal layer is illustrated for the exact self-
consistent case in figure 2. The curve originates at Eg = �0 for dN = 0, corresponding to a
single superconductor in the bulk limit. As dN increases, Eg declines monotonically towards a
gapless superconducting state [20]. The gap decays over the length scale ξ0. It should be noted
that, for the quasiclassical case, equation (11) admits a finite number of states for arbitrary
dN/ξ0, thus precluding the possibility of an energy gap. It can be concluded from figure 2 that
the length scale at which Eg is destroyed is much smaller than the characteristic length scale
describing the decay of the pair amplitude in the metal.

The quasiparticle amplitudes are contained partly within the normal metal region for
subgap energies. As an example, in figure 3 we show the normalized function |un(z)|2 at
the energy εn = 0.8�0 for both the self-consistent and non-self-consistent exact cases. The
wavefunctions undergo damped oscillations with a period of the order of the Fermi wavelength.
Their envelope decays over the length scale given by ξ0. As expected, for positions deep within
the superconductor, the quasiparticle amplitudes vanish at the given subgap energy. It is evident
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Figure 1. The normalized self-consistent quasiparticle spectrum as a function of the normalized
energy ε‖/EF. The dimensionless parameters are kFdN = 10 and kFξ0 = 50.
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Figure 2. The variation of the dimensionless energy gap in the normal metal as a function of dN/ξ0.
The curve follows from the exact self-consistent spectra.

that, for the self-consistent case, this quasiparticle state has a much greater extent within the
superconductor region. This follows from the inherent reduction in �(z) near the interface
and further demonstrates the importance of self-consistency for this configuration.

The previous results in figure 2 revealed the particular influence that the normal metal
width has on Eg. We now focus our attention on the one-particle excitations within the bilayer.
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Figure 3. Normalized quasiparticle amplitudes, |un(z)|2, as a function of dimensionless position
kF(z −dN). The highest peaked (blue) curve corresponds to the non-self-consistent result; the other
(red) curve is the self-consistent case. The fixed parameters are dN/ξ0 = 0.2 and εn/�0 = 0.8.
The inset depicts the corresponding spatially varying pair potential contrasted with the non-self-
consistent case. As the main plot illustrates, the self-consistent pair potential allows greater subgap
quasiparticle propagation within the superconductor.

To this end, we calculate the DOS, which can be expressed as [21]

N(ε) = 1

(2π)2

1

d

∑
n

∫
d2k‖δ(ε − εn), (12)

where k‖ = (k2
x + k2

y)
1/2. For the quasiclassical case, equation (12) can be written analytically

as

N(ε) = 2dN

ξ0
N(0)

∑
n

[
ε/�0

[nπ + arccos(ε/�0)]2
+

(ε/�0)
2√

1 − (ε/�0)2[nπ + arccos(ε/�0)]3

]
, (13)

where N(0) is the normal DOS for both spins at the Fermi surface. In figure 4 we show
N(ε) for two different normal metal widths. Focusing on the non-self-consistent cases first,
the larger normal metal width (upper panel) shows some agreement between the exact and
quasiclassical DOS for most energies. The DOS rises approximately linearly from the Fermi
level and then increases rapidly to form a rather pronounced peak. The location of this first
peak is found from equation (11) and occurs at the energy ε, satisfying

ε

�0
= cos

(
2dN

πξ0

ε

�0

)
. (14)

For the case dN/ξ0 = 1.5, this corresponds to ε/�0 ≈ 0.75. It is readily deduced that the
self-consistent pair potential serves to shift the relative positions of the peaks. Within the
neighbourhood of the main peaks, the disparity between the different cases is much more
evident. Moreover, we found that, besides oscillations on the atomic scale, there are no
discernible differences between the quasiclassical and exact cases in the limit dN � ξ0, as
expected. For the very thin metal layer (bottom panel), however, the curves have minimal
correlation, thus emphasizing that the Andreev approximation is not applicable in the regime
dN 
 ξ0. This holds similarly for the self-consistent case, whereby the differences in the
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Figure 4. DOS for two different dN, labelled in the figure. In the top panel, the quasiclassical
result is the upper (red) curve sharply peaked at ε/�0 ≈ 0.75. The self-consistently calculated
DOS is shifted towards lower energies relative to the exact non-self-consistent DOS (dark grey
(blue) and light grey (green) curves, respectively). For smaller dN (lower panel), all three cases
differ significantly. The uppermost quasiclassical curve lacks the same subgap structure exhibited
by the exact results, and the self consistent dark grey (blue) curve clearly shows a reduction in the
gap relative to the non-self-consistent case. To facilitate comparisons, the exact results have been
convolved with a Gaussian of width 0.01�0.

curves are not merely an overall shift. Thus, self-consistency is increasingly important for thin
normal metal layers. Finally, it is evident that the energy gap shown in figure 2 for dN = 0.2ξ0

is consistent with the value of the gap seen in the bottom panel of figure 4.

3. Conclusions

In conclusion, we have systematically and self-consistently calculated the electronic structure
of N/S heterostructures consisting of a thin normal metal layer adjoining a bulk superconductor.
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Both exact and quasiclassical results were obtained. The exact solutions revealed that the
energy gap decays monotonically at a rate that depends on the dimensionless normal metal
width kFdN. This measure of length is smaller than the characteristic length scale that describes
the decay of the pair amplitude in the normal metal, indicating that Eg is suppressed more
rapidly than the pair amplitude. The quasiclassical results, as expected, did not permit a gap in
the normal metal. The DOS in the normal metal was consistent with the above observations.
The exact quasiparticle spectra revealed that the gap onset is due to quasiparticle trajectories
with a large momentum component parallel to the interface, and that such states are not
accounted for accurately within the Andreev approximation. In addition, the modification to
the number of bound states and peaks in the DOS indicated that self-consistency should not be
neglected. We have focused here on the spectral properties of a thin normal metal adjacent to
a superconductor in the clean limit, which is clearly appropriate for layers whose dimensions
do not exceed the mean free path. It is known that elastic impurity scattering in the bulk does
not affect the gap. However, for situations where inelastic effects may be important, a finite
DOS at low energies is likely to arise.
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